

Scuola di Economia e Management

MSc in Finance and Risk Management

Thesis

D E E P L E A R N I N G M O D E L S F O R
H I G H - F R E Q U E N C Y C RY P T O C U R R E N C Y

F O R E C A S T I N G

andrea venuta

Advisors: Lucio Geronazzo, Pierluigi Zezza

Academic Year 2017-2018

Deep Learning models for high-frequency cryptocurrency forecasting
Andrea Venuta, © Academic Year 2017-2018

C O N T E N T S

1 Introduction 7

2 Cryptocurrencies 9

2.1 History 9

2.2 Background and definition of cryptocurrency 10

2.3 The Blockchain 13

2.4 Cryptocurrency markets 15

3 Deep learning and Recurrent Neural Networks 17

3.1 Supervised learning 17

3.2 Neural networks fundamentals 18

3.2.1 Optimizing the learning problem 20

3.2.2 Backpropagation 24

3.2.3 Overfitting: regularization and cross-validation 25

3.3 Recurrent neural networks 28

3.3.1 Vanishing and exploding gradients 29

3.3.2 Long short-term memory 31

4 The forecasting framework 35

4.1 Hypothesis 35

4.1.1 Directionality of prices 35

4.1.2 Volatility of returns 37

4.2 Data preprocessing and network structure 37

4.3 Loss function 43

4.4 Summary of the model 45

5 Results 49

5.1 Time series sourcing and structure 49

5.2 Statistics 53

5.3 Concluding remarks and future developments 57

1

L I S T O F F I G U R E S

Figure 1 Simplified blockchain representation 14

Figure 2 Perceptron 19

Figure 3 Neural network 20

Figure 4 Gradient descent 22

Figure 5 Overfitting 26

Figure 6 Dropout regularization 27

Figure 7 Recurrent Neural Network 29

Figure 8 Activation functions 30

Figure 9 Logistic function, compositions and derivatives 31

Figure 10 LSTM cell 32

Figure 11 End-of-epoch directionality experiment metrics 51

Figure 12 End-of-epoch volatility experiment metrics 51

3

"Unlike a well-defined, precise game like Russian roulette, where the risks
are visible to anyone capable of multiplying and dividing by six,

one does not observe the barrel of reality."
— Nassim Nicholas Taleb

1
I N T R O D U C T I O N

Cryptocurrencies are loosely defined as currencies whose transactions are
secured by means of cryptography. Most, but not necessarily all, cryp-
tocurrencies are based on the principle of the blockchain: a distributed
ledger of cryptographically signed transactions whose integrity is built
upon the consensus of all participants, resulting in a decentralized mech-
anism lacking both a single point of failure and the need of trusted
intermediaries for its correct functioning.

By now nearly two decades old, the concept of cryptocurrency has
gained incredible momentum and popularity in the very recent past.
The sudden surges in prices have been attracting retail and professional
investors alike; the underlying blockchain technology is the focus of a
growing body of industrial and academic research in the field of computer
science, all the while the banks and governments attempt to tackle the
issues arising from the way cryptocurrencies interact with fiat money
and existing financial instruments.

The entire ecosystem is still poorly understood by all the parties in-
volved, with the bulk of general opinion polarized on either side of the
bull-bear spectrum. As a result, the markets where cryptocurrencies are
traded exhibit extraordinary uncertainty not only with respect to pricing,
but also in terms of volatility and liquidity.

Barring the possibilities of studying the fundamentals of the phe-
nomenon of cryptocurrencies via traditional models – and moreso with a
long term outlook, due both to the peculiar nature of a cryptocurrency
as an asset, and the debatable forecasts about future relevance or lack
thereof – we shift the focus towards modern machine learning approaches
and attempt to build a short term price prediction framework geared
towards high frequency trading strategies.

Our model employs long short-term memory cells in a recurrent neural
network trained over historical high frequency data to classify one-period-

7

8 introduction

ahead forecasts of the market returns. Two classifiers are built, one
designed to label the directionality of future returns, the other focused on
capturing their magnitude. The data is sourced from the GDAX cryptocur-
rency exchange and the analysis is carried on the historical exchange
rates of Bitcoin, Ethereum and Litecoin against both EUR and USD, for a
total of six pairs. Statistical analysis over the forecasted time series shows
promising significance in the predictive power of the model in terms of
volatility.

Chapter 2 will introduce cryptocurrencies and cryptocurrency mar-
kets, providing the context upon which the modeling ideas have been
formulated.

Chapter 3 will introduce the general principles of deep learning, details
on the techniques and fundamental ideas employed in our work; namely,
the usage of long short-term memory recurrent neural networks to discover
patterns in sequential information.

Chapter 4 will present the forecasting framework, the hypotheses it is
built upon, and elaborate on the choice of model hyperparameters and
formats and time horizons of data.

Chapter 5 will discuss the results obtained in terms of predictive power
by each of the classifiers built, and draw some conclusions upon the
appropriateness of the model and features of the data.

2
C RY P T O C U R R E N C I E S

2.1 history

Literature introducing the idea of applying cryptographical algorithms
to payments dates as far back as the early eighties. Chaum (1982) raised
the issue of conflict between personal privacy and criminal activity in the
context of electronical banking payments that were becoming popular
[6] and proposed, along with Fiat and Naor, a model for untraceable
payments [7]. Ever since, a number of attempts were made towards
the development of the concept, which mostly remained in the form
of prototypes or academic papers until the publication of the paper
Bitcoin: A Peer-to-Peer Electronic Cash System (Satoshi Nakamoto, 2008) [23].
Bitcoin had the innovative feature of being a decentralized form of digital
currency: based on a peer to peer computer network ran by the users of the
currency themselves, transactions’ proof of legitimacy was sharded across
every node of the network, simultaneously rendering unilateral attacks
infeasible, and central, trusted financial intermediaries superfluous. This
appealed to those more critical of the established financial system, which
was heavily centralized and suffering the immediate aftermath of the
subprime crisis in terms of credibility and trustworthiness.

Around 2013, possibly as a disgruntled response to the European banks’
bailouts, Bitcoin started appearing under the spotlight of the media, and
its prices began to soar, moving from a value of as little as $10 to as
much as $1’000 over the course of the year. Over time, as Bitcoin piqued
the interests of retail investors and amateurs first, and governments and
financial institutions next, a large number of cryptocurrencies began to
surface, ranging from shady Ponzi schemes to genuine technical inno-
vations improving upon the state of the art. Among those, particularly
noteworthy is Ether, the cryptocurrency of the distributed smart contract
platform Ethereum.

9

10 cryptocurrencies

As of early 2018, Bitcoin is by and large the cryptocurrency with highest
market capitalization, estimated around $150 billion, its price exceeding
the $17’000 mark in late 2017. Ethereum follows suit, nearing a $100

billion market cap for a price of around $1’000 and, after that, the Ripple
cryptocurrency holds a market cap of around $40 billion on a price of
around one US dollar per unit[2].

2.2 background and definition of cryptocurrency

To illustrate how a cryptocurrency works, it is useful to take a step back
and consider how an exchange of value normally happens in society.
Barter, the most primitive form of it, is entirely transparent to the parties
involved, as the exchange of a good for another requires nothing more
than the physical possession of the good exchanged by each of the parties,
and their mutual agreement on the transaction. A significant, intrinsic
issue with barter is the fact that it may be hard to match supply to
demand, as not all parties involved may own some goods that all the
other parties are willing to trade with their own goods: if Alice was
willing to trade their cattle for grains, and Bob was willing to trade his
grains for salt, no transaction would happen unless there was a third
party Carlos willing to trade both grains for cattle and salt for grains.

In order to make up for the absence of a third party enabling the
transaction to happen, the practice of credit can take place: the exchange
of goods may be replaced, on one side, by contracting debt, that is,
promising that the value exchanged will be provided at a later point in
time. As beneficial to transactional efficiency as they are, credit-based
systems require either party to endure the risk that the counterparty may
default on their debt.

Eventually, as human societies grow in size, the concept of cash tends
to emerge. Cash represent, essentially, a form of certificate of ownership
of value, in whatever shape and form may it be, and, provided the general
consensus upon its validity (as the paper cash is printed upon doesn’t have
any intrinsic worth), allows transactions to happen without a bidirectional
exchange of goods or services. In the previous example, Alice would
just have to own cash (obtainable by selling their cattle to any third
party willing to buy it) in order to buy Bob’s grains. In order to come
into shape, a cash based economy needs some form of bootstrapping:
the emission, at inception, of a certain amount of cash, necessary for the
subsequent trading activity to occur. Another fundamental feature of cash
is anonymity: once cash exchanges hands, it is impossible to unequivocally

2.2 background and definition of cryptocurrency 11

trace its provenance. There is also no necessity of intermediaries to carry
the trades, as all that is involved is to actually physically exchange the
cash for the goods or services provided.

As a further evolution, our current economic system relies, by and
large, upon the intervention of banks and central authorities, who take on
the role of trusted intermediaries in the fulfillment of financial matters
and agreements, which is valuable whenever transactions are not as
trivial as exchanging cattle for grains. Fiat money is printed, distributed
and regulated by said central authorities.

Although no formal, agreed-upon definition exists, it is helpful to de-
scribe a cryptocurrency as a system which meets the following criteria[17]:

• Distributedness of consensus. The state of the system is not determined
by a single party: all parties must agree on the current state of the
system at any given time, either by trusting other parties or by
actively contributing to the construction of new state.

• Tracking of ownership. The system must account, at any given time,
for the ownership of units of currency – not necessarily by linking
units of currency to their physical owners, but by at least defining
some actor in the system to which currency units can be linked, e.g.
a “wallet”.

• Currency minting rules. The system must specify and enforce con-
ditions, rules, amounts and initial ownership for the process of
minting new coin.

• Cryptographical proof of ownership. As public-key cryptography algo-
rithms are robust and reliable, it is possible to employ them as a
necessary and sufficient form of proof of ownership by verifying
digital signatures via public key.

• Transaction issuance by owners. Only the owners of currency have the
right to issue transactions with their own currency, and they are
able to do so by digitally signing the transactions with their private
key.

• Uniqueness of transactions. If more than one transaction refers to the
same unit of currency, all but one of those transactions must be
considered invalid; i.e., double spending of the same unit of currency
is prohibited.

12 cryptocurrencies

Each of these features may be compared to the state of our current
financial landscape to account for similarities and differences and under-
stand the innovations brought by cryptocurrencies.

Requiring a distributed consensus to function is a characteristic cryp-
tocurrencies have in common with paper money, and a robust one: if a
few individuals reject the notion of paper money, they will simply be
excluded from participating in the economy without posing any risk to
its correct functioning, but can and will be allowed back in as soon as
they decide to accept paper money again. For a paper money economy
to be overthrown, the largest amount of its current participants must
agree to some new course of action. This intrinsic robustness falls apart
in larger societies, whenever banks and central authorities attain any
form of discretionary power over the money: the trust is no longer spread
over the whole community, but has now to be largely focused towards a
small number of actors, thus creating a single point of failure. It could
be argued that bank bailouts, ill-received by the general society, may
have promoted interest in cryptocurrencies’ decentralized trust features,
although little in the way of research offers insights on the matter[19].

Tracking the ownership of every unit of currency is a fundamental fea-
ture of any and all economic systems, without which the system cannot
function at all, and it is a feature for which the system must provide
adequate guarantee. Paper money and barter have it embedded, as the
physical possession of either cash or goods is sufficient to prove own-
ership. Credit relies instead on the good faith of the debtor or on some
form of intermediation, thus introducing a form of risk for the individual
participants in the transaction. Banks constitute a different configuration
altogether: to rely on them means to rely on the accuracy of their book-
keeping operations and on the robustness of their databases. As much as
excellent technology and processes may be deployed, centralization intro-
duces again a source of fragility[26]: a single bank will always face some
technological or operational risk that may jeopardize a large number of
transactions and destroy customers’ value. Cryptocurrencies solve this
issue by maintaining a distributed ledger of transactions whose integrity
relies on cryptography and, again, the decentralization of consensus.

Currency minting rules again draw a line between the centralized ap-
proach and the cryptocurrency approach. While the ultimate responsibil-
ity in terms of the former lies with the authorities, in cryptocurrencies
the rules are established by the design of their software, are known be-
forehand and can’t be circumvented as the software itself enforces them –
it is not possible to issue a fraudulent currency-minting transaction as the

2.3 the blockchain 13

network would simply reject it, and this constitutes an advantage over
paper money which is exposed to forgery risk. Generally, those rules for
a cryptocurrency contemplate some form of scarcity by design, such that
the presence of hard limitations allows the coin to gain value. Bitcoin, for
instance, has an asymptotic ceiling of 21 million units.

Cryptographical proof of ownership and limitation of transaction rights to
currency owners can, on principle, be attained both by banking based sys-
tems and by cryptocurrencies. As it is the worldwide industrial standard,
public-key cryptography is also heavily employed in banking for these
(and other) security purposes, and while decentralization might provide
a further means of tamper prevention, cracking public-key cryptography
is already widely regarded as an infeasible endeavor.

Uniqueness of transactions is the context where a centralized system
definitely presents an advantage over a distributed system. The double
spending issue is hard (but not impossible) to tackle computationally,
whereas centralizing the responsibility of validating transactions intrin-
sically solves it. If the bank facilitating the transaction declares some
transaction to be valid, that declaration is authoritative, provided accu-
rate bookkeeping, and can be trusted. On the other hand, if a node of
the distributed network receives only one of a couple of transactions
spending the same amount of currency, and another node receives the
other one, the two nodes must find some algorithm to decide for only
one of them to be valid. In computer science, this is termed the Byzantine
Generals problem[16].

2.3 the blockchain

To implement the aforementioned features, cryptocurrencies rely on a
data structure called blockchain. On practical terms, the blockchain is a
public ledger of transactions whose cryptographical properties, coupled
with the distributedness of consensus, concur in guaranteeing its validity.
Technically, a blockchain is a linked list (i.e. a “chain”) of arbitrary blocks
of information, inherently sequential in nature – just like financial trans-
actions are. Starting from an authoritative block, called the genesis block,
another block can be created by first crafting the operational information
it must contain (i.e. a list of transactions), then including a reference to
the previous block, and finally signing the whole block with an expensive
computational operation called proof of work. As the new block is accepted
by the network, the next block will have to reference it for the blockchain

14 cryptocurrencies

to keep growing, and so the ones after that1. The procedure of validating
a block is referred to as mining.

The reference to a previous block is done by computing a cryptographic
hash of said block and including it in the new block. Cryptographic hashes
are easy to verify, but nearly impossible to forge: finding a collision, that is,
a set of different data with the same hash, is computationally infeasible
for all intents and purposes, so a hash guarantees correct reference to a
block.

Genesis block

78c70cf8a66471d6...

Block 1

29cf6bc0c2f3cd23...

Block 2

88f6719c6763f23b...

Block 3

d859ebc62dc775dd...

...

transaction 1

transaction 2

transaction 3

transaction 4
...

78c70cf8a66471d6...

transaction 1

transaction 2

transaction 3
...

29cf6bc0c2f3cd23...

transaction 1

transaction 2

transaction 3
...

88f6719c6763f23b...

transaction 1

transaction 2

transaction 3
...

Figure 1: Simplified representation of a blockchain. Each block contains a list of
transactions and refers to its parent block via its hash.

The proof of work[11] is a very important requirement for the reliability
of the cryptocurrency, as it prevents Sybil attacks from happening. A
Sybil attack[9] entails the forgery of many identities in a distributed
network in order to gain control of it. If the signing of a block was
instantaneous, one could use a large amount of fake identities to mine an
equally large amount of blocks and, by impersonating more than half of
the whole network, gain implicit authority and control over the blockchain.
The proof of work is a computationally expensive algorithm which is
feasible to execute as one instance, but which would be impossible to
execute in a number of parallel instances high enough to cover more
than half of the network. This way, genuine, well-intentioned individual
nodes can perform their work by expending a relatively modest amount
of computing power, while attackers have no means of subverting the
network. Furthermore, its output has to be easily verifiable, and again,
hashing functions are an appropriate candidate. As an example, Bitcoin’s
proof of work algorithm[23] requires a nonce (i.e. a number) to be computed
and added to the block, such that the numerical representation of the hash
of the block is smaller than a given threshold – the smaller the threshold,

1 If two blocks reference the same block as predecessor, a fork happens, the blockchain
splits in two and the network has to take a decision as for which of the two branches to
accept or reject. The way this happens is implementation-specific and outside the scope
of this work.

2.4 cryptocurrency markets 15

the harder it is to find the proper nonce. Furthermore, considering that
no information can be extracted from computing a hash, it is also not
possible to speed up the retrieval of the nonce in any way, requiring it to
be sought by brute force alone.

To incentivize validation of transactions and creation of blocks, miners
are rewarded with the emission of new currency; at the time of writing,
12.5 BTC are awarded to whomever “discovers” a new block, and the
chance to do so largely depends on how much computing power is
available to the single miner2.

Blockchains need not be restricted to encapsulating financial infor-
mation; any kind of information that may require timestamping and
approval by general consensus may constitute a good use case for the
blockchain. The Ethereum platform, for instance, relies on the blockchain
to store and enforce smart contracts, which are essentially software proto-
cols describing some form of negotiation or contract. Interestingly, both
Ethereum and Bitcoin are Turing complete, hence virtually any form of
smart contract may be deployed.

2.4 cryptocurrency markets

One of the fundamental practical issues concerning the adoption of cryp-
tocurrency for real world transactions is value stability. As of the time
of writing, alongside by participating in the mining process, cryptocur-
rency can be acquired in exchange for fiat money via trading in digital
exchanges; from this trading activity, a valuation may be inferred for each
cryptocurrency, both in relation to various fiat currencies and in relation
to each other. What is apparent to active market participants and external
observers alike are the exceptional swings in value that brought Bitcoin
from a value of around $10 up to $10’000 over the course of five years. It
is debatable whether cryptocurrencies may gain traction as a means of
payment in the foreseeable future, when extreme variations in the daily
prices may discourage both sellers to part from something that may be
much more valuable tomorrow, and buyers to acquire something that
may be worth much less tomorrow.

As it stands, perhaps the most profitable endeavor towards cryptocur-
rencies could lie in speculation; both as a means of attaining financial
returns for the individual, and as a means of aiding market efficiency with

2 Mining pools can be organized, i.e. groups of nodes working together towards mining a
block to then split the reward according to each node’s individual contribution in terms
of computing power.

16 cryptocurrencies

the outlook of collectively discovering a long term fair price, thus pro-
moting adoption of cryptocurrencies for real world use cases. It is hence
of interest to make a few observations on the features of cryptocurrency
markets.

Typically, the daily returns of a cryptocurrency are much more volatile
than more liquid, traditional assets, and are very non-normal[5].

It has been observed that cryptocurrency prices correlate with senti-
ment, when measured via Google Trends data[21].

When considering pairs with a single fiat currency, different cryptocur-
rencies’ returns tend to be highly correlated with each other, possibly
owing to the imbalance in market capitalization – as Bitcoin is arguably
the most popular cryptocurrency, when volatility events happen in conse-
quence to sentiment, other cryptocurrencies tend to follow suit.

In terms of market microstructure, peculiar behaviours are observed as
well. While the traded volume is generally high, many orders tend to be
matched fairly frequently, and the bid-ask spread stays at the one-cent
level (both for EUR and USD markets) most of the time, the distribution
of liquidity is unusual: order volume tends to cluster at prices relatively
distant from the best bid and ask, and market-taking orders of all but
the smallest volumes inevitably incur in heavy slippage. When medium
to large market orders are fulfilled, the bid-ask spread widens to tens,
when not hundreds, of the paired fiat currency – apparently for Bitcoin,
less so for the other, less valuable cryptocurrencies, but still high enough
to disrupt efficiency. The likely cause of these peculiarities lies in the
fact that the bulk of participants to these markets are non-professional
retail investors endowed with very small capitals, trading on sentiment,
their afflux promoted by the very low barriers to entry and mainstream
popularity of the practice.

As a consequence of observing the uncommon conditions of these
markets, we speculate that some patterns may emerge from the intraday
pricing data that could allow for some form of forecasting. As linear-
ity may prove too restrictive a function space, we seek for nonlinear
relationships instead, by means of deep learning techniques.

3
D E E P L E A R N I N G A N D R E C U R R E N T N E U R A L
N E T W O R K S

This chapter will provide an overview of the fundamental concepts
of deep learning, and details on the specific models and optimization
techniques employed in the work described in Chapter 4.

3.1 supervised learning

Supervised learning is the class of techniques geared towards the usage
of known inputs and outputs in order to find a function, along with
its parameters, that approximates correct, unknown outputs given new,
unknown inputs. Perhaps the simplest example of this is constituted by
linear regression: given a matrix X ∈ Rn×p of n observations of p different
variables (called independent) and a vector y ∈ Rn of observations of yet
another variable (called dependent), the objective is to find a parameter
vector β ∈ Rp which minimizes an unobservable error vector ε ∈ Rn in
the equation

y = Xβ+ ε (3.1)

so that predictions could be made in the form of

ŷ = X̂β (3.2)

where X̂ is a different matrix of independent variables observations
and ŷ is yet unknown.

More generally, any supervised learning algorithm is composed of a
function, a parameter space for it, a source of data (the training set) made
of (input, output) couples, and some target function to be optimized over
the parameter space.

Intuitively, given one input and the associated expected output, the
parameters are “learned” for a function which will yield values as close

17

18 deep learning and recurrent neural networks

as possible to the expected output, and it is supposed, when exposed to
unknown input, to yield a value as close as possible to the correct, but
yet unobserved, output.

The forecasting problem studied here has been framed in such a way
as to be fit for a supervised learning algorithm: given past price data
up to one period before the present as input, and current price data as
output, learn the parameters which will allow a reasonably significant
one-period-ahead forecast to be made over new price data; the focus on
deep learning techniques is based on the hypothesis that nonlinear models
are more adept at obtaining significant performances over linear models.

3.2 neural networks fundamentals

Neural networks are borne out of the seminal idea, by McCulloch and
Pitts, of a mathematical computation framework imitating the behavior
of biological neurons [22]. A neuron fires a current along its axon through
its dendrite after receiving solicitation from its synapses; what determines
whether the dendrite will fire is some “strength” attribute of the synapses
connected to it and the amount of current each synapse, coming out of
some other axon, is carrying. The way a neuron “learns” is by altering the
“strength” attribute of each synapse, reinforcing the connections that yield
desirable results and weakening those that give negative contribution.
Mathematically, this results in a model of the form

yk = ψ

(
m∑
i=0

wkixi +βk

)
(3.3)

Where:

• yk is the axon’s “current level”, i.e. the neuron’s output value

• ψ is the transfer or activation function, i.e. a function exhibiting a
number of properties that allow it to act as a threshold over its input
– that is, intuitively, make it so its output is some continuous form
of a Boolean state of truthfulness or falsity, similarly to a logic gate

• The xis, for i ∈ {0, 1, . . .m}, are the “current levels”, i.e. numerical
values coming from either other synapses, or some input source

• The wkis are termed the neuron’s weights and represent the afore-
mentioned “strength” attribute for each synapse entering the neu-
ron; lower values will mean penalty in the contribution coming

3.2 neural networks fundamentals 19

x1

x2

x3

x4

x5

∑
y

w1

w2

w3

w4

w5

Figure 2: A perceptron with a 5-dimensional input and a sigmoid activation.

from a synapse to the input of the activation function, while higher
values will reward previous activations coming from that synapse
with a higher output value.

• βk is a bias term

So, synthetically, a neuron’s output is the activation value of the sum
of its inputs weighted by that specific neuron’s parameters – also called
propagation function. One such unit of computation is also called a percep-
tron.

On a larger scale, each perceptron’s axon is connected to the synapse
of one or more other neurons, forming a layered network. Perceptrons in
a neural network can be subdivided into three categories, according to
their position in the network: they can either be on the input layer, on a
hidden layer or on the output layer. The first of these three classes indicates
the set of perceptrons whose input values are provided straight out of the
training set; the last one indicates the set of perceptrons that emit output;
finally, the second class comprises perceptrons that “communicate” to
and from some other perceptrons. There may be zero, one or more than
one hidden layers, and perceptrons may even form feedback loops or
connect to earlier layers via recursion – this will be key for our model
implementation. The attribute deep in “deep learning” refers to the presence
of many hidden layers, as this fact can yield arbitrarily complex models
capable of impressive feats, such as learning to play the game of Go from
scratch well enough to beat some of the best human players [25].

A recursive traversal of the network from the input to the output layer
yields our external model, that is, a function that takes as inputs the same

20 deep learning and recurrent neural networks

Input

Hidden

Output

Figure 3: A neural network, endowed with a 4-dimensional input layer, a 5-
dimensional hidden layer and a 3-dimensional output layer.

inputs as the input layer and yields an output in the same space as the
output layer’s.

3.2.1 Optimizing the learning problem

Let us define a generic neural network as a function of the form

f : X→ Y, f(x;ω) = ŷ (3.4)

where ω ∈ Ω is a set of parameters, namely, the weights of each unit
in the neural network’s layer. We want the network to be able to predict
the value y ∈ Y for some given x ∈ X; in other words, we want f to be a
function with parameters ω such that, if applied to x, yields a value ŷ
“as close as possible” to y, in some sense. A measure of the “closeness” of
ŷ and y is given by some cost or loss function. Without loss of generality,
we may give the following definition, along with the desired properties,
of loss function:

L : Y × Y → R, L(ŷ,y) = l (3.5)
L(ŷ,y) > 0 ∀ŷ,y ∈ Y (3.6)

L(y,y) = 0 (3.7)

3.2 neural networks fundamentals 21

that is, it should be zero only for the exact prediction, and greater than
zero for any other value of ŷ. The definition may be relaxed by requiring
a unique global minimum in (y,y), not necessarily taking value 0.

The loss function can be chosen according to the task at hand. For a
regressive model, some function as intuitive as the mean squared error
could be used:

L(ŷ,y) ≡MSE(ŷ,y) =
1

n

n∑
i=1

(ŷi − yi)
2, n = dim Y (3.8)

For classification tasks, other loss function are more appropriate, such
as the cross entropy or the Kullback-Leibler divergence, and will be discussed
in detail in the next chapter, as they pertain to the implementation of the
model.

At this point, we are endowed with all the mathematical objects neces-
sary to formulate the learning optimization problem

min
ω̂∈Ω

L(f(x; ω̂),y) (3.9)

Solving this problem is not much different, in principle, than solving
any convex optimization problem: if the cost function is continuous and
differentiable, its minima or maxima may be found in correspondence of
the roots of its first derivative. As x and y stay constant throughout one
learning cycle, the loss function can be rearranged to highlight the fact
that x and y are its parameters and ω is its domain, and thus rewritten
in the form

L(ω̂; x,y) (3.10)

An important intuition arises from the fact that, if L is differentiable,
then the quickest way of reaching a (local) minimum is by “walking”
along the steepest descent direction; that is, by moving from the current
point in the optimization cycle in the direction opposite of the gradient
computed at that point.

This intuition leads to the gradient descent algorithm. Let ∇L(ω̂t; x,y)
be the gradient of the loss function at the point ω̂t. Then, the iterative
step

ω̂t+1 = ω̂t − λ∇L(ω̂t; x,y) (3.11)

makes ω̂ converge towards the minimum for appropriate λ, and it
holds

L(ω̂t+1; x,y) 6 L(ω̂t; x,y). (3.12)

22 deep learning and recurrent neural networks

Figure 4: Gradient descent. Taking repeated steps against the gradient eventually
leads to a local minimum.

The hyperparameter λ, called the learning rate, is one of the most impor-
tant to evaluate for a neural network: it establishes a compromise between
speed of convergence and accuracy. It is, fundamentally, a measure of
“how long a step” will be taken in the gradient’s opposite direction: too
short, and the convergence will take a prohibitively long time; too long,
and a minimum might be overshot by a “jump” on an opposing side of
the slope and convergence may never be achieved.

A fundamental issue of “vanilla” gradient descent is that the gradient
is evaluated for the entire training set, and this can be extremely compu-
tationally intensive and may render the optimization too slow to be of
any use. A number of variants are available that progressively solve this
and other issues that appear in the context of solving of the optimization
problem. [24]

Stochastic gradient descent, for instance, computes the gradient, at each
step, only for a single training example; this will lead to a much more
frequent overshooting problem, especially around ravines (i.e. points
where the surface has partial derivatives of very different magnitudes
along different dimensions), but one that can be solved with appropriate
choice of learning rate.

While generally the learning rate is set as a constant before starting
the learning process, a better approach is to let it vary according to the
context at each step. Adagrad [10] alters the learning rate for each of the
model’s parameters at each time step. Let GT ∈ Rn be a vector of the

3.2 neural networks fundamentals 23

sum of the squares of the gradients of each parameter for the first T time
steps; that is,

GT ,i :=

T∑
t=1

(
∂L(ω̂t; x,y)
∂ω̂t,i

)2
, i ∈ 1, . . . n (3.13)

where n is the dimension of the parameter space. Then, one Adagrad
step is defined as

ω̂t+1 = ω̂t −
λ√
Gt + ε

· ∇L(ω̂t; x,y) (3.14)

where ε is a positive term of negligible magnitude (perhaps in the
order of 10−8) that has the practical usefulness of avoiding divisions by
zero. While this greatly increases the robustness of the optimization, there
is a sharp monotonical decrease in the learning rate that may push it to
too low a value, thus preventing convergence; this decrease derives from
the fact that the gradient dampening rate is growing monotonically, as it
is the sum of squared values.

To solve this issue, RMSprop and Adadelta were developed and focused
on employing an exponentially weighted moving average of the square
of the gradients as dampening rate, letting the power of earlier iterations
decay over time.

Gt,i := βGt−1,i + (1−β)

(
∂L(ω̂t; x,y)
∂ω̂t,i

)2
, i ∈ 1, . . . n (3.15)

As a further improvement, Adam [15] includes an exponentially weighted
moving average of the non-squared partial derivatives, introducing two
terms

Gmt,i := β1G
m
t−1,i + (1−β1)

(
∂L(ω̂t; x,y)
∂ω̂t,i

)
, i ∈ 1, . . . n (3.16)

Gvt,i := β2G
v
t−1,i + (1−β2)

(
∂L(ω̂t; x,y)
∂ω̂t,i

)2
, i ∈ 1, . . . n (3.17)

and the corresponding update rule

ω̂t+1 = ω̂t −
λ√

Gvt−1 + ε
Gmt−1 (3.18)

We found Adam to be the best fit for our work as it had better perfor-
mance on all the data sets considered.

24 deep learning and recurrent neural networks

3.2.2 Backpropagation

In order to implement gradient descent, or any of its variants, it is
necessary to have a way of efficiently computing gradients. Consider
the formalism of computation graphs: one can represent operations, that
is, functions f : Rn → Rm as directed edges, and values (e.g. the input
x ∈ Rn and the output y ∈ Rm obtained by applying f(x)) as nodes. This
way, it is easy to represent elaborate webs of function compositions, as
neural networks are.

With this representation in mind, let us consider the chain rule for
derivatives:

df ◦ g(x)
dx

=
df(y)

dy

dg(x)

dx
(3.19)

where f : Y → Z, g : X → Y are differentiable functions and X, Y,Z ⊆ R.
Generalizing to higher dimensions, it holds

Jf◦g = (Jf ◦ g)Jg (3.20)

where J∗ is the Jacobian matrix. Intuitively, the chain rule allows us to
simplify the computation of the derivative of a mathematical object as
complex as a neural network, provided it can be factorized as composition
of simple functions.

At this stage, the graph representation becomes useful as it is the
base for the differentiation algorithm known as backpropagation. The
algorithm requires a first step, the feedforward, to happen; this consists of
evaluating the objective function, namely, the loss function L(f(x; ω̂),y)
endowed at time t with the set of parameters ω̂t, over some training
data (x,y). This happens via a breadth-first traversal of the computation
graph, i.e. computing all the innermost composed functions first. Once
the scalar value of the final function ε = L(ŷ,y) has been computed, it is
possible to compute the Jacobian of the outermost function (e.g. JL) and,
following the reverse order of the breadth-first traversal (hence the term
backpropagation), recursively multiply it by the Jacobian of every other
operation. From the chain rule follows that the gradient of the web of
functions has been found.

It is worth noting that employing a differentiable activation function
at the nodes is what makes it possible to analytically compute partial
derivatives beforehand from which a Jacobian matrix can be formed.

Linearity is a sufficient, but not necessary, condition for this to happen,
and generally undesirable at that: as linear functions map to matrices,

3.2 neural networks fundamentals 25

and linear function composition maps to matrix multiplication, a neural
network endowed with only linear operations would reduce to a single
matrix and, hence, to a linear operation, drastically reducing its use-
fulness. Employing non-linear differentiable activation functions at the
nodes, such as the hyperbolic tangent, the logistic function or the rectified
linear unit, allows for a much broader mapping from neural networks to
functions spaces.

The backpropagation process begins with an initial, randomly chosen
set of weights, i.e. choosing a random point in the parameter space
from where to start the gradient descent. The gradient is then evaluated
for the loss function computed over every training example, and a step
proportional to the learning rate is taken against it. Once the process is
iterated over all the training examples, an epoch is over. Another epoch
can begin, starting from the point in the parameter space the preceding
epoch ended at. The number of epochs is a hyperparameter: more epochs
mean slower training, but potentially more accurate results.

3.2.3 Overfitting: regularization and cross-validation

The overarching objective of a machine learning algorithm is to provide an
estimator to be used with unknown data after having learnt its parameters
via known data. In other words, the desired outcome is generalization. It
may happen that this is not the case, and a very low loss achieved on the
training data does not correspond to a low loss on predicting unforeseen
data. This situation is termed overfitting. As an example, consider an
algorithm that tries to fit a very high degree polynomial through a few
points lying on a simple parabola; it may well be that the high degree
polynomial passes through all of the training points, but the prediction
outcome is not the one desired. On the other end of the spectrum, there
is the phenomenon of underfitting which happens when the model barely
fits the provided data at all – consider the problem of trying to fit a
straight line through the same points on the parabola. The hyperparameter
of capacity may be introduced here: it may intuitively be defined as the
“range” of functions that the algorithm is allowed to learn. For example,
restricting the grades of the polynomial in the problem just mentioned to
a range greater than one and less than five is bound to yield much better
and more accurate results.

26 deep learning and recurrent neural networks

Figure 5: An example of overfitting. Wikimedia Commons, CC-BY-SA-4.0

Norm regularization

The problem of restricting the function search space to a subspace of
simpler functions may be formalized by introducing a penalty term on
some measure of the “complexity” of the function, and adding it to the
loss function before performing gradient descent. In practice, as there is
strong dependence between the neural network function f and its weights
ω, the L1 and L2 norms over Ω are employed as regularization terms.

‖ω‖1 :=
dimΩ∑
n=1

|ωn| (3.21)

‖ω‖2 :=

(
dimΩ∑
n=1

|ωn|
2

)1
2

(3.22)

Given some discretionary hyperparameter δ ∈ R representing some
desired “strength” of the regularization, we can reformulate the learning
problem with (e.g.) L2 regularization as

min
ω̂∈Ω

L(ω̂; x,y) + δ‖ω̂‖2 (3.23)

Generally, the L2 norm is chosen as it has the advantage of being
differentiable, hence possessing analytical partial derivatives that allow
for a faster numerical computation of the gradient. As the neural network
is akin to a function composition graph, the regularization may also be
applied to a subset of the weights pertaining to a specific layer or unit.

https://commons.wikimedia.org/wiki/File:Overfitted_Data.png

3.2 neural networks fundamentals 27

Dropout regularization

Input

Hidden

Output

Figure 6: An example of dropout regularization. In gray, edges which are being
temporarily disabled over the course of a training operation.

As a further means of reducing overfitting, the technique of dropout is
implemented. A dropout of magnitude p, p ∈ (0, 1) indicates that every
edge between nodes in the network has a probability p of being severed
during any gradient descent step. This makes it so not all network nodes
are trained against all data, leading to an increased robustness in the
features learned by each node, and a consequent better generalization.

Cross-validation

In order to provide a means of quantitatively evaluating underfitting or
overfitting issues, it is useful to split the data set initially into two subsets,
the training and the test set. Running the network against the test set, one
can check whether the magnitude of the error is satisfactory. Generally,
the error evaluated on the training set constitutes a lower bound for the
error obtained on the test set.

As a means of providing an indicator for automatically tuning capacity
(among other hyperparameters), it is useful to further subdivide the data
set and reserving a portion of it as validation set; no training is done over
validation data as well, but errors and other metrics may be computed
on it in order to “steer” the learning process and reducing the occurrence
of both overfitting and underfitting. This process is called cross-validation.

28 deep learning and recurrent neural networks

3.3 recurrent neural networks

While vanilla feed-forward neural networks constitute an instrument
adept at solving a broad class of problems, the task of price prediction
via past observations is perhaps best addressed by a specialization of the
model in the form of recurrent neural networks[14]. Recurrent networks are,
in their structure, geared towards the processing of sequential data; that is,
data where a substantial amount of information is delivered not only by
the values in and of themselves, but also by their relative ordering and
positioning. Without loss of generality, we could define sequential data
as data carrying information in the form of positional dependency with
past data.

Consider a discrete dynamical system of the (general) form

pt+1 = f(pt, xt;ω) (3.24)

Such a system, parameterized by a parameter vector ω, yields the next
value of a sequence (in the mathematical sense) as function of both some
endogenous context, i.e. the point in the sequence’s space the system
is at at time t, and some exogenous vector of factors xt (likely, but not
necessarily, itself time-dependent). It is in this form that most phenomena
linked to variation over time can be modeled.

The definition, quite apparently, shows recursion over the endogenous
input: that is, by repeatedly applying the definition we can explicitly
express dependence between the current state and some endogenous
state farther back in time.

pt+1 = f(pt, xt;ω)

= f(f(pt−1, xt−1;ω), xt;ω)

= f(f(f(pt−2, xt−2;ω), xt−1;ω), xt;ω)

· · · = (f ◦ f ◦ · · · ◦ f)(p0, xt . . . x0;ω)

=: f(t)(p0, xt, . . . x0;ω)

It is upon this “unrolling of dynamics” principle that recurrent neural
networks operate. One immediate, practical simplification with respect to
the above abstract model is that while a dynamical system can exist since
a “negative infinity” time and until a “positive infinity” time, computing
resources are necessarily finite and a recurrent network won’t be able
to handle more than a finite number of iterations, thus driving some
lossiness in the modeling process.

3.3 recurrent neural networks 29

x

p

ω

f

ω

. xt−2

pt−2

xt−1

pt−1

xt

pt

f f f

Figure 7: Graph of a recurrent neural network, in the implicit form (on the left)
and in the explicit, unrolled form (on the right).

On the other hand, “unrolling” a finite, appropriate number of recur-
sive steps allows us to represent the recurrent network as a directed
acyclic graph, and capture the following properties of the abstract model
(see figure 7):

• The sequentiality of the exogenous inputs

• The sharing across nodes of the parameter vector

• The temporal dependence on past values

Interestingly, by virtue of the presence of recurrence, the unlimited
form of the model is Turing complete, that is, according to the Church-
Turing thesis, it can simulate a Turing machine and consequently compute
any computable function of the naturals. Notably, this is a property
intrinsically deriving from recursive functions, not strictly from the fact
that said functions are organized in the form of a neural network.

3.3.1 Vanishing and exploding gradients

One substantial drawback in terms of learning speed for a recurrent
neural network lies in the sequentiality of the computation graph: one
single recurrent layer maps to a high number of hidden layers when
unrolled, and the intrinsic sequential dependence from one iteration
to the next makes it so the breadth-first traversal behaves more like a
depth-first traversal, on the grounds that the network is deeper than it is
broad and there is limited potential for parallelizing the calculation of
one step of gradient descent; formally, the backpropagation algorithm
can’t get any less complex than O(n) in the number of recurrent units.

Recurrent networks are affected by another significant issue arising
from their structure, and related to convergence. Recall that, for the

30 deep learning and recurrent neural networks

network to fit functions beyond linearity, it is necessary to apply some
non-linear differentiable function at the nodes, i.e. the activation function.
Characteristic to most activation functions is the saturation property:
informally, an activation function tends, for input values far from 0

at either side, to asymptotically converge at some value. Consider the
example of the logistic function and its derivative:

S(x) :=
ex

ex + 1
(3.25)

dS(x)

dx
=

ex

(1+ ex)2
(3.26)

S(x) is monotonically increasing, takes values (as a gross approxima-
tion) in (0.9, 1) for x & 2.5 and in (0, 0.1) for x . −2.5; straying too far
from these small intervals of values for x would “flatten” the node’s
response. Most notably, the derivative exhibits a very limited codomain,(
0, 14
]
, taking maximum at Ṡ(0) = 1

4 and asymptotically converging to 0

for x→∞ and x→ −∞.

Figure 8: Some activation functions: sigmoid, hyperbolic tangent, arctangent and
hard sigmoid. All of them exhibit some form of asymptotic saturation
far from the origin.

Now, backpropagation through time in the case of an unfolded re-
current layer consists in repeated application of a gradient of the same
form. In the case of the sigmoid, this would mean “constraining” each
successive gradient’s argument in a progressively narrower interval, such
that at the end of the chain we’d be left with a gradient that has a value of
approximately zero and which would not push the optimization any fur-
ther at later backpropagation steps. This issue takes the name of vanishing
gradients problem.

The vanishing gradients problem is very apparent in the presented
example of the logistic function, but it applies generally to most other
activation functions wherever there is a critical topology, i.e. a path in the

3.3 recurrent neural networks 31

Figure 9: Vanishing gradients. On the left, the logistic function composed with
itself up to four times; on the right, the respective four derivatives. As
the function flattens to smaller codomains, the gradient quickly goes
to zero.

recursive application of the gradient operator that leads to values near
zero.

Albeit infrequent, the symmetrical exploding gradients problem may also
happen; it would consist of gradient composition paths insisting on larger
and larger values that would lead to extreme movements in the gradient
descent thus completely disrupting the optimization.

3.3.2 Long short-term memory

In practice, what vanishing gradients would entail in the sequential con-
text is that the weights would be optimized with much smaller gradients
in response to the training examples farther back in the sequence and
with larger gradients in response to the elements near the end of the
sequence; this is because the backpropagation steps apply a large number
of compositions for the former and a smaller number of composition for
the latter. In the end, this means that what is modeled by the recurrent
network is a much stronger dependence on recent elements of the se-
quence and a disregard for the older ones, i.e. long term dependencies
aren’t properly captured. Furthermore, this means that a recurrent net-
work doesn’t have the ability to detect relationships at larger time scales,
but that is precisely what would be desirable in a nonlinear modeling
framework for pricing time series, where a nonlinear longer term trend
may bring as much information as the last few observations.

The vanishing gradient problem can be mitigated, for example, by
severing a number of connections along the backpropagation path or by
trying to process and alter such path. For example, if we had weaker
recurrent connections to the immediately nearby units but added con-

32 deep learning and recurrent neural networks

xt

ιt

φt

ot

ρt

ρt−1

st−1

st
×

×

+ ×

Figure 10: Graph of a LSTM cell at time t, representing the flow between input,
output, forget gates (resp. ιt, ot, φt), proper inputs (xt), internal state
(st) and output (ρt).

nections to units farther back, we could overweight the importance of
long term dependencies; this fundamental idea was introduced in the
form of leaky recurrent units [12] [18] and developed as the concept of
gated recurrent units; that is, recurrent units that govern the error flow via
hidden gates, i.e. activations of weighted sums not much different from
a vanilla artificial neuron, but executing special functions by virtue of
their connections in the single recurrent unit. Of particular interest to our
application is the long short-term memory, or LSTM, unit [13].

A long short-term memory cell (see figure 10) is endowed with an input
gate, an output gate, a forget gate, a hidden unit and, most importantly,
an internal state (denoted as st). The internal state spans the whole un-
folded chain of LSTM units, net of some linear operations, thus allowing
information to be stored in it, and flow through it, which doesn’t strictly
depend on a point in the sequence. So, each recurrent unit has three
input sources, that is, the internal state, the proper input (denoted as xt)
and the previous cell’s hidden output (ρt−1), and emits two outputs, that
is, the (next) internal state and the cell’s hidden output (ρt).

The forget gate can be intuitively defined as an activated sum of both the
inputs and the hidden unit, each weighted by a different set of weights –
the former set (ω) is conceptually the same discussed earlier, the latter
(θ) is specific to this hidden unit, and both of them are specific to the
forget gate. The output to this gate is in the range (0, 1) where the left
bound means “forget everything” and the right bound means “remember

3.3 recurrent neural networks 33

everything”; an appropriate activation function for this task is the logistic
function S.

φt(xt, ρt−1;ωφt , θφt) := S

∑
i

ω
φt

i xt,i +
∑
j

θ
φt

j ρt−1,j +β
φt
t

 (3.27)

The “forget” operation is performed by multiplying the internal state
times the output of the forget gate. At the recurrence step t + 1, the
information coming from the internal state will be carried over intact
from the state at time t if the forget gate outputs a “high” (i.e. close to 1)
value and will be diminished if the gate outputs a “low” value.

The input gate has different semantics, but the form of its function is
identical to that of the forget gate, and its parameters are its own:

ιt(xt, ρt−1;ωιt , θιt) := S

∑
i

ωιti xt,i +
∑
j

θιtj ρt−1,j +β
ιt
t

 (3.28)

Again, its output is in the interval (0, 1) and it provides a weight for
the activation of the weighted sum of the input values at time t to the
network. Activation on the input needs not, in fact, necessarily be a
sigmoid, but a different nonlinear operation can be chosen in its stead;
a good alternative is the hyperbolic tangent tanh. The input activation as
well has its own set of parameters (ωAt , θAt):

At(xt, ρt−1;ωAt , θAt) := tanh

∑
i

ωAt
i xt,i +

∑
j

θAt
j ρt−1,j +β

At
t


(3.29)

Up to here, all the objects have been defined which are necessary for
the computation of one step of internal state, which can be expressed in
the following form (arguments omitted for the sake of simplicity):

st = φt · st−1 + ιt ·At (3.30)

Informally, we can say that the next step of the internal state is com-
puted as the sum of the gated previous state and the gated activated
input, that is, as a “mix” of past, persistent information and new, punctual
information.

34 deep learning and recurrent neural networks

The output gate’s form is no different from the other gates, and it is,
similarly, used to filter its hidden unit’s value, in order to compute the
cell’s output ρt:

ot(xt, ρt−1;ωot , θot) := S

∑
i

ωoti xt,i +
∑
j

θotj ρt−1,j +β
ot
t

 (3.31)

ρt = tanh(st)ot (3.32)

Overall, equations 3.30 and 3.32 represent the gist of the LSTM unit’s
functioning. As it can be expressed in the form of a graph, the backprop-
agation formula applies as previously discussed, the error propagating
backwards from the final output ρt (for a LSTM endowed of t units)
towards the first layer.

4
T H E F O R E C A S T I N G F R A M E W O R K

The empirical work hereby presented is focused upon the employment
of a long short-term memory deep neural network with the objective of
evaluating its predictive power on high frequency cryptocurrency time
series. The overarching idea is to test whether cryptocurrencies’ extreme
volatility drives a signal of inefficiencies which may be captured by
leveraging the pattern recognition capabilities of deep learning models.

The methodology employed in order to test our hypothesis is as follows.
First, the network is trained on a chosen data set, then one-period-ahead
forecasts are generated from an out-of-sample data set. Statistical tests
and measurements are then computed to assess the resulting model’s
predictive power.

4.1 hypothesis

The hypothesis will be articulated over two experiments:

• Predicting the directionality of prices, i.e. the sign of future returns

• Predicting the volatility of future returns, i.e. some point-wise mea-
sure of their magnitude

The testing will entail running an out-of-sample forecast and evaluating
statistical classification measures (such as precision, recall, specificity and
accuracy) in order to draw conclusions on the model’s power for the task
at hand.

4.1.1 Directionality of prices

We will frame our experiment as a classification problem. We want to use
recent historical price data to forecast the probability of the following
events:

35

36 the forecasting framework

• The price will rise by at least 0.2% over the next time interval (“price
increase” outcome)

• The price will fall by at least 0.2% over the next time interval (“price
decrease” outcome)

• The price will move by less than 0.2% in either direction over the
next time interval (“neutral” outcome)

The motivation behind the choice of a three-label classification in lieu of
a more intuitive binomial classification of positive versus negative returns
is twofold. First, the employment of high frequency data is bound to show
a high degree of noise around the origin: due to factors mostly arising
from market microstructure, it is likely for the bulk of returns to have
magnitude in the order of 10−3, 10−4, and as these kinds of magnitudes
are relatively inconsequential in operational terms it makes little sense
to separate the positive from the negative ones. Furthermore, such small
returns prevent realizing a profit when accounting for transaction costs.

The threshold of 0.2% has been chosen as a reasonable compromise
between the rarity of the event and the noisiness of the magnitude:
returns in the order of 0.2% are rare enough at our chosen time horizon
as to filter out noisy observations, but frequent enough not to produce
largely unbalanced classes. Consider this extreme example: if we chose
50% returns as threshold, any network would achieve maximum accuracy,
as the predicted label would be always be neutral due to the fact that all
observed returns would fall within the (-50%, 50%) interval and all the
network would have to learn would be to always output the neutral label
regardless of the input.

We chose to conduct our analysis on a 5 minutes time horizon. This,
too, is the outcome of a compromise between availability and noisiness
of the data: shorter time intervals would carry almost only noise, while
for longer time intervals the volume of data might be insufficient for the
task of training the deep network.

Depending on the instrument considered, the 0.2% threshold allows us
to label between 40% to 60% of the sample data as neutral, while the rest
of the data is approximately evenly split between the price increase and the
price decrease labels; very roughly, we have a (25%, 50%, 25%) split. The
distribution of data yielded from this threshold is not overly balanced,
but still reasonable.

We want to test whether long short-term memory based deep neural
networks are able to correctly predict the direction of returns larger

4.2 data preprocessing and network structure 37

than the threshold over short intraday time intervals. We will refer to
variables and mathematical objects related to this experiment with the
term “directionality experiment”, and by labeling with a “d” superscript or
subscript.

4.1.2 Volatility of returns

This experiment is framed similarly to the previous one. We want to
forecast the probability of the following events:

• The price will move by at least 0.2% in either direction over the next
time interval (“high volatility” outcome)

• The price will move by less than 0.2% in either direction over the
next time interval (“low volatility” outcome)

The reasons for the choice of the 0.2% threshold are identical; the
classes, instead, have been reduced to two on the grounds that adding
a third one would either produce wildly unbalanced classes (possibly
extremely skewed towards the neutral at high thresholds) or balanced but
arguably useless classes at smaller thresholds – it is debatable whether
any value could be extracted from separately identifying 0.1% and 0.2%
returns.

We want to test whether long short-term memory based deep neural
networks are able to correctly predict the occurrence of large returns over
short intraday time intervals. We will refer to variables and mathematical
objects related to this experiment with the term “volatility experiment”,
and by labeling with a “v” superscript or subscript.

4.2 data preprocessing and network structure

The deep network used as a forecasting means implements a supervised
learning algorithm based upon long short-term memory (LSTM) cells. The
network accepts as input a three-dimensional tensor. Each element of
the first dimension of said tensor is computed as a rolling window of
past observations; namely, for the t-th forecast it is a matrix Mt ∈ Rn×m

where n is the length of the window and m is the number of parameters.
The parameters chosen are five, that is, the simple returns computed
on the open, high, low and closing prices, and finally the trading volume
out of an observed 5-minutes candle. The window of those observations

38 the forecasting framework

defining the matrix Mt of the input for the prediction of the return on
the closing price at time t is chosen as (t−n, t− 1), such that the matrix
takes the following form:

Mt :=



Ot−n Lt−n Ht−n Ct−n Vt−n

Ot−n+1 Lt−n+1 Ht−n+1 Ct−n+1 Vt−n+1
...

...
...

Ot−2 Lt−2 Ht−2 Ct−2 Vt−2

Ot−1 Lt−1 Ht−1 Ct−1 Vt−1


(4.1)

Mt ∈Mn×m ⊆ Rn×m (4.2)

Each one of such matrices is called a sequence, as it is a set of elements
ordered over time of which the network is supposed to learn to predict
the successor.

The training example yt is the one-hot encoding of the label of the return
computed on the closing price at time t, that is, a probabilistic represen-
tation of the certainty that the (known) return Ct belongs to one of the
three labels (price decrease, neutral, price increase) or one of the two labels
(low volatility, high volatility), respectively, for the directionality and for
the volatility experiment.

Let us define the probability space associated with our problem

(Ω,F, P) (4.3)

where Ω is the continuous sample space describing the possible values
of the closing returns at time t, F is the σ-algebra of information available
at every time t, and P is the probability function. We then define the
random variables

ȳd : Ω→ Yd, Yd ≡ {price decrease, neutral, price increase} (4.4)
ȳv : Ω→ Yv, Yv ≡ {low volatility, high volatility} (4.5)

as functions mapping from the sample space to the set of the events
pertaining to each experiment.

We represent the classes in the general form of a vector describing a
partition of the probability space. We have, respectively in the case of the

4.2 data preprocessing and network structure 39

directionality experiment and in the case of the volatility experiment, the
following events:

yd,T
t :=

 P(Ct 6 0.002|FT)
P(−0.002 < Ct < 0.002|FT)

P(Ct > −0.002|FT)

 (4.6)

yv,Tt :=

[
P(|Ct| < 0.002|FT)
P(|Ct| > 0.002|FT)

]
(4.7)

where FT is the σ-algebra of information available in the training set,
i.e. after the outcome has been observed; that is, with this process we
label known past information. As an example, if the return Ct was below
-0.2%, its label would be price decrease in the directionality experiment
and high volatility in the volatility experiment, and the training examples
would be equal to

yd,T
t :=

10
0

 , yv,Tt :=

[
0

1

]
(4.8)

Do note that the event space for the volatility experiment can be derived
from the event space for the directionality experiment simply by merging
the classes price increase and price decrease into the single high volatility
class, and the low volatility and neutral classes are equivalent.

The final network is akin to a function of the form

f : Mn×m → R f(Mt) = ŷt (4.9)

where Mn×m is the space of the matrices defined as of (4.2), and ŷt is
a partition of the probability space representing the forecast at time t,
conditional on the preceding time steps; that is, of the forms

ŷdt :=

 P(Ct 6 −0.002|Ft−1)
P(−0.002 < Ct < 0.002|Ft−1)

P(Ct > 0.002|Ft−1)

 (4.10)

ŷvt :=

[
P(|Ct| < 0.002|Ft−1)
P(|Ct| > 0.002|Ft−1)

]
(4.11)

40 the forecasting framework

The predicted label, i.e. the random variable ȳ∗t , is extracted from such
partitions by choosing the index with the highest probability, i.e.

ȳdt =


price decrease ŷdt,1 >

1
3

neutral ŷdt,2 >
1
3

price increase ŷdt,3 >
1
3

(4.12)

ȳvt =

{
low volatility ŷvt,1 >

1
2

high volatility ŷvt,2 >
1
2

(4.13)

From the presence of bounded activation functions in the layers arises
the need to further transform the data to a suitable format. The sigmoid
function, for instance, is bounded in the interval (0, 1) and takes mean-
ingful values in some neighborhood of the point 0; too far out in either
direction, and it saturates quickly to 0 or 1, too close to zero and it yields
little to no information.

The data needs to be distributed in such a way as to spread the available
information throughout some useful range of the domain of the activation
function. The untransformed 5 minutes returns time series falls into the
second case, that is, it generally exhibits values in the order of magnitude
of 10−2 to 10−4 which are unoptimal for the reasons explained above.

It is thus necessary to map the input domain to a wider interval near
the origin so that the activation function may show desirable behaviour.

To do this, we need to define a normalization operation which should
perform the mapping without applying any distortion to the information.

A very simple function which is suitable to the aforementioned needs
is a form of the feature scaling function, defined this way:

Gx : R→ R, Gx(x) =
x

max |x|
(4.14)

It is a linear transformation, parameterized by the maximum amplitude
of the x series, that magnifies the magnitude properties of the input data
to a scale which is better suited for the neural network’s activation, but
does not distort important information such as sign or distributional
properties. Do note that the labels are to be computed before the feature
scaling, as this doesn’t preserve the magnitude of returns we are inter-
ested in. Also, the same normalization operation with the same width
parameter is to be applied to out-of-sample data in order to provide
consistency of the inputs.

The normalization and denormalization functions, along with their
parameters, are computed separately once for each of the open, high, low

4.2 data preprocessing and network structure 41

and close over the whole data set for a given pair; the volume column is
left unaltered as it already exhibits desirable properties.

Once labels are computed and normalization is applied, the next step
of data preparation involves building the actual data set to be used by the
neural network, that is, computing and storing all the (Mt,y∗t) couples
for both experiments:

Id :=
{
(Mt,ydt) : t ∈ {n,n+ 1, . . . N}

}
(4.15)

Iv := {(Mt,yvt) : t ∈ {n,n+ 1, . . . N}} (4.16)

where N is the total number of entries in the data set; the first index in
the set is taken at n as Mt is built with data going back n periods.

The data set will further be split into two chunks: the training set, that
is, the set that will be used by the network for training its weights, and
the test set, that is, a set that will be used for assessing the performance of
the model after it has been trained. This split is fundamental as to avoid
or at least mitigating the overfitting problem. Data up to midnight of
December 31st, 2017 has been allocated for the training set, the remainder
up to January 27th, 2018 for the test set. Training sets may show radically
different sizes as some instruments haven’t been available for trading
over the whole time horizon considered, and some were illiquid enough
as to have periods of inactivity for which no data was recorded.

A further split is performed on the training set, the last 20% of which
is reserved as validation set. Internally, the neural network performs the
validation operation at the end of each epoch: that is, it runs a prediction
cycle on the validation set and evaluates the loss function. This is useful
in evaluating the training progress and in establishing a condition for
the early stopping of the process, as the training shouldn’t be carried
further if the network has already converged near a local minimum, since
continuing may cause overfitting; this can be assessed by observing the
value of the loss function on the validation data at the end of each epoch
and checking whether a significant decrease, a stagnation or even an
increase has taken place.

The neural network has a very simple structure:

42 the forecasting framework

• A LSTM layer endowed with 24 hidden layers, a 32-dimensional out-
put space, the hard sigmoid 1 function as its recurrent activation and
the hyperbolic tangent function as its input activation, L2 regularized

• A dropout layer

• A densely connected simple perceptron layer with a 32-dimensional in-
put space and a 3-dimensional (for the directionality experiment) or
2-dimensional (for the volatility experiment) output space, activated
with the softmax function (resp. S3 and S2), also L2 regularized.

The softmax function is a generalization to n dimensions of the sigmoid
function. Intuitively, it is the normalization of a vector to which an
elementwise sigmoid function has been applied. It is defined as

Sn : Rn → Rn
1 , Sn(x)j :=

exj∑n
i=1 e

xi
(4.18)

where Rn
1 is the subspace of vectors in Rn having unit Euclidean norm,

and exhibits the property

n∑
i=1

Sn(x)i = 1 ∀x ∈ Rn (4.19)

which matches the property of the probability space partitioning

n⋃
i=1

Bi = Ω =⇒
n∑
i=1

P(ŷt ∈ Bi) = P(Ω) = 1 (4.20)

Algebraically, the neural network can be represented as the composition
of two transformations, say, LSTM : Rn×m → R32 and, respectively for
each experiment, Dd : R32 → R3

1 and Dv : R32 → R2
1:

1 Hard sigmoid is a piecewise linear function, defined as

H(x) :=


0 x 6 −2.5
x+2.5

5 x ∈ (−2.5, 2.5)

1 x > 2.5

(4.17)

4.3 loss function 43

Nd : R24×5 → R3
1 N(x) := LSTM ◦Dd(x) (4.21)

Nv : R24×5 → R2
1 N(x) := LSTM ◦Dv(x) (4.22)

Thus, once trained, the network will transform a sequence into the
one-period-ahead forecast.

The 32-dimension figure was found by empirical means as it yields
desirable results in terms of both minimum loss achieved and speed of
convergence. Along with it, the dimension m = 5 was identified as the
number of distinct features in a sequence (open, high, low, close, volume)
and the dimension n = 24 (corresponding to 2 hours windows) was
empirically found to yield acceptable results.

4.3 loss function

As the experiments involve the construction of a classifier, it is necessary to
properly choose the loss function. A metric is needed that is able to capture
some sort of “distance” between the actual probability distribution of the
inputs, i.e. y∗t , and the predicted probability distribution, i.e. ŷ∗t . We will
employ instruments from the field of information theory [8].

As we are dealing with probability distributions, we may give the
definition of entropy:

H(ȳ) = −
∑
y∈Y

P(ȳ = y) log2 P(ȳ = y) (4.23)

(for ease of notation, we will write py ≡ P(ȳ = y)). Intuitively, entropy
measures the uncertainty of a discrete random variable in bits. Let us
develop the concept as a simple example. Consider the toss of a fair coin,
and the associated probability density function

Xc =

{
heads p = 1

2

tails p = 1
2

(4.24)

Its entropy is computable as

H(p) = −ph log2 ph − pt log2 pt = −
1

2
log2

1

2
−
1

2
log2

1

2
(4.25)

=
1

2
+
1

2
= 1 (4.26)

44 the forecasting framework

that is, one bit of entropy. This is intuitive as one could map the binary
value 0 in a bit to the tails event and the binary value 1 to the heads event.
Consider the analogous case of a fair die:

Xd =


1 pd = 1

6

2 pd = 1
6

...
6 pd = 1

6

(4.27)

Its entropy is computable as

H(pd) = −

6∑
i=1

pdi log2 p
d
i = −

6∑
i=1

1

6
log2

1

6
(4.28)

= − log2
1

6
≈ 2.58 (4.29)

The intuitive difference with the fair coin example is that representing
the information conveyed from the possible states of the die variable
using the Xd representation is “more expensive” in terms of bits due to the
higher complexity of the random variable – trivially, one can represent 2

states with 1 bit (21), and 8 states with 3 bits (23), hence 6 states of equal
probability can be represented with slightly less than 3 bits, that is, with
H(Xd) bits.

Consider now an unfair coin, that is, the variable Xc endowed with a
different probability distribution q:

Xc =

{
heads q = 1

4

tails q = 3
4

, H(q) = −
1

4
log2

1

4
−
3

4
log2

3

4
≈ 0.623 (4.30)

The entropy is now lower than 1, owing to the fact that most of the
information is carried by the tails event, which is more frequent.

Consider now the case of a suspicious agent betting on Xc who decides,
lacking information on the coin’s true probability distribution p, to as-
sume it is distributed unfairly instead, with probability q: the agent will
not be able to take decisions in the most efficient way as it is assuming
a wrong probability distribution. The “cost” of assuming this wrong
distribution is measurable via the Kullback-Leibler divergence:

D(p||q) =
∑
x∈Xc

p(x) log2
p(x)

q(x)
(4.31)

4.4 summary of the model 45

This measure satisfies Gibbs’ inequality[20]:

D(p||q) > 0, D(p||q) = 0 ⇐⇒ p ≡ q (4.32)

and fits the criteria required for a loss function as defined in 3.5, 3.6, 3.7.
Do note that the divergence is not an actual measure, as it is not symmet-
rical: D(p||q) 6= D(q||p) in general. This can be explained informally by
noting that the Kullback-Leibler divergence measures the cost of assuming
distribution q over the actual distribution p, and the opposite, i.e. assuming
distribution p over the distribution q, may not be as costly (or as cheap).
In information terms, the divergence measures the number of extra bits
required to encode information pertaining to a variable distributed like p
if the distribution q is used in its stead.

It is appropriate to also give the definition of cross entropy, both in
absolute terms and in relation to entropy and Kullback-Leibler divergence:

H(p,q) = −
∑
x∈Xc

p(x) log2 q(x) = H(p) +D(p||q) (4.33)

As the entropy depends strictly on the probability distribution, for
fixed p the two measures are equivalent up to the additive constant H(p).

In the context of our forecasting framework, we can use either the cross
entropy or the Kullback-Leibler divergence to measure the cost of using the
distribution emerging from the prediction, ŷ, when the actual distribution
is y. As no assumptions are made over the underlying distribution of
the data, a numerical estimation is carried in the form of averaging the
measures computed over the sample and the forecast:

D̂(y||ŷ) =
1

N

N∑
t=1

D(yt||ŷt) (4.34)

Ĥ(y, ŷ) =
1

N

N∑
t=1

H(yt, ŷt) (4.35)

Either of the two functions above can be used interchangeably as loss
function in the deep network, as both fit the relaxed requirement of a
unique global minimum on two identical arguments.

4.4 summary of the model

The model implemented is structurally identical for both the directionality
experiment and the volatility experiment, with the exception of the

46 the forecasting framework

number of neurons in the output layer – three for the directionality case,
two for the volatility case, one neuron for each class. Summing up, the
structure of the module is as follows:

• LSTM input layer: fLSTM : R24×5 → R32

– 24 recurrent units

– hyperbolic tangent input activation

– hard sigmoid gates activation

– L2 regularization

• Dropout layer with p = 0.2: fdropout : R32 → R32

• Dense output layer: fdense : R32 → R
q
1

– q = 3 (directionality) or q = 2 (volatility) neurons

– softmax activation

– L2 regularization

The number of trainable parameters in the LSTM layer arises from the
cells’ internal structure and is computable as

4((m+ 1)q+ q2) (4.36)

wherem = 5 is the number of features and q = 32 is the dimensionality
of the output space, which yields 4864 trainable parameters; the number
n = 24 does not enter the computation as each timestep is fed sequentially
and bears no effect on the parameters, and the number 1 summed to m
indicates the bias term. The dropout layer has no trainable parameters,
as it is simply a random static operation on the edges independent of the
parameter space. The number of parameters for the dense layer is simply

(q+ 1) ∗ o (4.37)

where q = 32 is the dimensionality of the input space, o = 3 or o = 2 is
the dimensionality of the output space and, again, the number 1 indicates
the bias. This leads to 99 parameters for the dimensionality case and 66

parameters for the volatility case. Overall, we have:

• fd : R24×5 → R3
1 with 4963 parameters (dimensionality network)

• fv : R24×5 → R2
1 with 4930 parameters (volatility network)

4.4 summary of the model 47

These models, while exhibiting a staggering amount of parameters
compared to classical econometrics models – consider that models as
parsimonious as GARCH(2,2) or ARMA(2,2) are few and far between and
already considered too complex – are parsimonious enough given both
the nature of deep networks, and the fact that the number of samples
used for the learning process is much higher, spanning from a few tens
of thousands up to hundreds of thousands of sequences.

Other hyperparameters have been chosen as follows:

• Cross entropy has been chosen as loss function

• The optimization algorithm is Adam with a learning rate of 10−4

• We chose to allocate the observations from January 1st, 2018 to
January 27th, 2018 (roughly 7500 observations) as test set

• The rest of the samples have been split as 80% training set, 20%
validation set

• The training happens in mini-batches of 64 sequences at a time; this
allows the computation to be parallelized and executed on a GPU
to some degree and is a good trade-off between speed and results,
as the LSTM’s internal state is only reset from one batch to the next

• The training happens over 100 epochs; although some sort of con-
vergence is achieved early on in the training, we observed more
robust results by avoiding early stopping

Thusly configured, training the model takes roughly between one and
three hours of time, where higher sample count translates to longer
training times.

5
R E S U LT S

5.1 time series sourcing and structure

We hereby present the outcome of our analysis. The time series data
was sourced from Coinbase[1]’s GDAX exchange[3]’s historical data
application programming interface. Data was requested in the form of 5

minutes OHLCV candles in a timespan ranging from January 1st, 2016 to
January 27th, 2018, for the following currency pairs:

• BTC-EUR (Bitcoin to Euro)

• BTC-USD (Bitcoin to US Dollar)

• ETH-EUR (Ethereum to Euro)

• ETH-USD (Ethereum to US Dollar)

• LTC-EUR (Litecoin to Euro)

• LTC-USD (Litecoin to US Dollar)

The time series were downloaded via a Python script and subsequently
processed in order to obtain suitable sequences in the form specified
in 4.1. To obtain as many samples as possible, sequences were com-
puted in a sliding window fashion, i.e. all matrices Mt were evaluated
for t = n,n+ 1, . . . N which would comprise data points respectively
indexed (1 . . . n− 1), (2 . . . n), . . . (N− n . . .N− 1). The overlapping of
sequences arising from this formatting would introduce a bias that could
cause overfitting; to correct for it, it was sufficient to shuffle the sample
ordering, i.e. presenting sequences to the network in a random order,
so that overlapping sequences would not appear close to one another
and the gradient could move in more significant directions. Furthermore,
sequences including missing data were discarded.

49

50 results

Table 1: Time series sample sequences count

Symbol Training set Validation set Test set Total

BTC-EUR 153854 38463 7474 199791

BTC-USD 167234 41808 7474 216516

ETH-EUR 37768 9441 7441 54650

ETH-USD 125332 31332 7474 164138

LTC-EUR 30873 7718 7319 45910

LTC-USD 76739 19184 7474 103397

The number of sequences for the training, validation and testing of
each pair is reported in Table 1. Noteworthy is the fact that the EUR-based
pairs have a much smaller sample count, arising from the fact that some
pairs have been available for trading only later on in the time period
considered, and EUR markets are generally slightly less liquid than the
USD counterparts and tend to have more missing data.

As we have around 5000 parameters in each of the deep models, we
roughly obtain 6 to 33 observations per parameter. While there are neither
hard-and-fast rules, nor loose heuristics related to such ratio, it is tenable
that the model could benefit from a much larger amount of data – as
is the case with the largest part of deep learning models, that have the
general tendency to be much less parsimonious than any other class of
models.

In the figures 11 and 12 is reported the evaluation of the cross entropy
and Kullback-Leibler divergence for all the pairs considered, respectively
for the directionality and for the volatility experiment.

It is interesting to make some observations upon the convergence speed.
In the directionality experiment, the pairs with the largest amount of train-
ing samples (BTC-EUR, BTC-USD and ETH-EUR) reached convergence
as early as the tenth epoch, which is much sooner than the other pairs;
the most blatant case being LTC-EUR, which kept making significant
progress well into the fiftieth epoch. This heterogeneity is similarly re-
flected in the volatility experiment, although convergence happens earlier
for all pairs (e.g. LTC-EUR has good enough convergence before the
fortieth epoch). This is explainable by noting the simpler structure of
the experiment, and the better balance of the classes (see tables 2 and 3):
while the cardinality of the neutral class in the directionality experiment is
equal to the cardinality of the low volatility class in the volatility experi-

5.1 time series sourcing and structure 51

Figure 11: Directionality experiment. Cross entropy and Kullback-Leibler diver-
gence evaluated at the end of each training epoch for each pair, both
for the training set and the validation set

Figure 12: Volatility experiment. Cross entropy and Kullback-Leibler divergence
evaluated at the end of each training epoch for each pair, both for the
training set and the validation set

52 results

Table 2: Directionality data set labels distribution

Training set Test set
Symbol Decrease Neutral Increase Decrease Neutral Increase

BTC-EUR 9.73% 80.05% 10.22% 24.73% 50.94% 24.34%
BTC-USD 8.54% 82.75% 8.71% 27.12% 45.89% 26.99%
ETH-EUR 18.19% 63.04% 18.77% 22.85% 52.16% 25.00%
ETH-USD 16.66% 66.30% 17.05% 26.13% 45.21% 28.66%
LTC-EUR 22.60% 54.65% 22.76% 24.07% 53.03% 22.90%
LTC-USD 22.71% 54.34% 22.95% 27.01% 46.21% 26.77%

ment, ranging from 54% up to 80%, the high volatility class has roughly
double the size of each of the price decrease and price increase classes; in
fact, the former is just a merged version of the latter two, and while in the
volatility case a very balanced distribution of 54%–46% can be attained
(in the LTC-USD case), the best case scenario in the directionality case
attains a 23%– 54%–23% split, which is somewhat unbalanced already,
and much worse imbalances in the other cases.

While generally balanced classes are desirable, one must not forget
the practical nature of a forecasting framework: the target of balanced
classes could be simply achieved by choosing a different threshold, but
if it was set too low the classification might not have made sense in real
world applications. The chosen threshold – 0.2% – on the other hand,
might be of use e.g. in choosing to perform high frequency trades only
when there’s a high enough expectation of a short term variation of size
sufficient to cover transaction costs.

Another apparent peculiarity is the remarked difference in balance
between the training sets and the test sets. Test sets, spanning roughly
four weeks of data, appear much more balanced than their training set
counterparts, spanning up to two years, for the same pair, and there is
much less variation between pairs as well; all pairs have roughly a 25%–
50%–25% balance in the directionality case, and a 50%–50% balance in the
volatility case. This fact probably embodies some volatility trend affecting
the last month of data which wasn’t always present in the preceding
period.

5.2 statistics 53

Table 3: Volatility data set labels distribution

Training set Test set
Symbol Low volatility High volatility Low volatility High volatility

BTC-EUR 80.05% 19.95% 50.94% 49.06%
BTC-USD 82.75% 17.25% 45.21% 54.11%
ETH-EUR 63.04% 36.96% 52.16% 47.84%
ETH-USD 66.30% 33.70% 45.21% 54.79%
LTC-EUR 54.65% 45.35% 53.03% 46.97%
LTC-USD 54.34% 45.66% 46.21% 53.79%

5.2 statistics

To ascertain the effectiveness of our model, we evaluated some metrics
derived from the confusion matrix on the results yielded from running the
model on the test set. We compared the predicted classes to the actual
classes in order to identify:

• True positives: the instances where the classifier predicted a “positive”
outcome when the actual outcome was “positive” (Statistical power)

• True negatives: the instances where the classifier predicted a “nega-
tive” outcome when the actual outcome was “negative”

• False positives: the instances where the classifier predicted a “positive”
outcome when the actual outcome was “negative” (Type I error)

• False negatives: the instances where the classifier predicted a “neg-
ative” outcome when the actual outcome was “positive” (Type II
error)

In the volatility experiment, we arbitrarily chose to equate the high
volatility class with the positive outcome as that is arguably the more
interesting event to forecast. In the directionality experiment, we computed
statistics in three groupings:

• Considering “positive” the price increase class and “negative” the
aggregate of the neutral and price decrease classes

• Considering “positive” the neutral class and “negative” the aggre-
gate of the price increase and price decrease classes

54 results

• Considering “positive” the price decrease class and “negative” the
aggregate of the neutral and price increase classes

This setup allows us to evaluate the predictive power of the model
individually for each class.

Via the numerosity of the elements in the confusion matrix for each of
the cases above, we computed the following statistics:

• Precision: the probability that the actual outcome is “positive” con-
ditional on the classifier predicting “positive”. The higher the preci-
sion, the more confident is the classifier when emitting a “positive”
classification.

• Recall: the probability that the classifier predicts “positive” condi-
tional on the actual outcome being “positive”. The higher the recall,
the fewer “positive” outcomes are mislabeled by the classifier.

• Specificity: the probability that the actual outcome is “negative”
conditional on the classifier predicting “negative”. The higher the
specificity, the lower the chance that a “negative” prediction is
actually a “positive” outcome.

• Accuracy: the probability that a given prediction is correct, both
accounting for true positive and true negative.

• F1 Score: it is computed as the harmonic average of precision and
recall; it has no direct probabilistic meaning, but a classifier may be
considered of better quality the closer the F1 is to 1, and of worse
quality the closer the F1 is to 0.

The statistics are computed as follows, where tp, tn, fp, fn respectively
indicate the number of true positives, true negatives, false positives and
false negatives:

Precision =
tp

tp+ fp
(5.1)

Recall =
tp

tp+ fn
(5.2)

Specificity =
tn

tn+ fp
(5.3)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(5.4)

5.2 statistics 55

Table 4: Statistics for the directionality experiment

Symbol Class Precision Recall Specificity Accuracy F1 Score

↑ 0.42935 0.08199 0.96393 0.74461 0.13769

BTC-EUR ↔ 0.51402 0.98265 0.07742 0.52846 0.67497

↓ – – – – –

↑ 0.41798 0.21289 0.88450 0.69620 0.28210

BTC-USD ↔ 0.48943 0.92642 0.23448 0.54031 0.64048

↓ 0.37576 0.02783 0.98223 0.71726 0.05182

↑ 0.41030 0.20577 0.88962 0.70376 0.27408

ETH-EUR ↔ 0.57872 0.90125 0.39767 0.63870 0.70484

↓ 0.41345 0.19597 0.90755 0.72996 0.26590

↑ 0.41093 0.26554 0.82892 0.65422 0.32261

ETH-USD ↔ 0.51758 0.80080 0.48003 0.61174 0.62877

↓ 0.36842 0.21678 0.85597 0.67743 0.27295

↑ 0.42027 0.17094 0.92320 0.73839 0.24303

LTC-EUR ↔ 0.57665 0.93036 0.32135 0.62488 0.71200

↓ 0.40927 0.15347 0.92380 0.72666 0.22324

↑ 0.40151 0.23159 0.86035 0.67925 0.29375

LTC-USD ↔ 0.51779 0.86122 0.40974 0.60114 0.64674

↓ 0.39858 0.17815 0.89126 0.68586 0.24624

F1 =
2

1
Precision + 1

Recall
(5.5)

Tables 4 and 5 report the computed metrics for all of the cases consid-
ered, which may be used to infer the quality of the model.

Results of the directionality experiment

It is immediately apparent that our model in the directionality experiment
performed very poorly. Both increase and decrease labels for all of the
considered pairs achieved precisions in the range 35%–43%, which means
that the model is highly unreliable whenever predicting a direction.

56 results

Table 5: Statistics for the volatility experiment

Symbol Precision Recall Specificity Accuracy F1 Score

BTC-EUR 0.675115 0.479411 0.777778 0.631389 0.560676

BTC-USD 0.711503 0.478734 0.771137 0.612925 0.572358

ETH-EUR 0.690157 0.519944 0.785880 0.658648 0.593079

ETH-USD 0.688474 0.647619 0.644865 0.646374 0.667422

LTC-EUR 0.704282 0.459279 0.829168 0.655417 0.555986

LTC-USD 0.674961 0.647761 0.636943 0.642762 0.661081

Particularly noteworthy is the case of the BTC-EUR pair, for which the
classifier emitted no “decrease” predictions at all. The neutral case is
slightly better, with values ranging between 48%–58% which is barely
better than emitting the signal via the flip of a coin. Recall is just as bad
for the increase and decrease classes: anywhere between 75% and 90% of
the “positive” events are missed by the classifier. The neutral case, on the
other hand, exhibits a disproportionately high recall. An interpretation
can be derived from these results: all the model learned to do was to emit
the neutral label most of the time. If the model always predicts the same
label, it will certainly capture every instance of the corresponding event
happening! This can further be confirmed by noticing the high specificity
of the increase and decrease classes: the model is right most of the time
when predicting something other than increase and decrease respectively,
and this emerges from the large number of neutral predictions. The
overall high accuracy is misleading, again as a consequence of classifying
most observations as neutral. The F1 score reveals the inadequacy, by
presenting generally unsatisfactory values. We conclude that LSTM based
deep neural network are not a suitable tool for directionality prediction
in the domain of cryptocurrencies and under the simple formulation
proposed, and at the very least more articulate approaches should be
considered[4].

Results of the volatility experiment

The model responds much better under the volatility formulation of the
problem. Precision is between 67% and 72% for all the six analyzed
time series, which means that in general a “positive” signal is much
more reliable than random guessing; how important an error the 30%

5.3 concluding remarks and future developments 57

of wrong “positive” classifications constitutes will generally depend
on the strategy it is being deployed in. The recall is lower than the
precision for all of the pairs; this means that the model emits fewer
“positive” signals than the number of actual volatility events, but is
reasonably confident on the prediction when it does emit said signals.
Specificity exhibits more variability across the pairs, while being generally
satisfactory – with values above 77% on all pairs but ETH-USD and LTC-
USD, in both of which cases it lies around 64%. Accuracy is consistent
between 61% and 65% which indicates a generally good performance
when accompanied by the previously commented measures. Lastly, F1
highlights the penalization occurring on the recalls, symptom of the fact
that the model is affected by the same issue as the directionality model:
namely, a bias towards the neutral class.

5.3 concluding remarks and future developments

We designed a simple long short-term memory deep learning model for
classifying cryptocurrency time series. The results in the directionality
experiment were unsatisfactory, while the volatility experiment showed
promising results. As absence of autocorrelation for returns and presence
of autocorrelation for squared returns are commonly known stylized facts
for most other asset classes, these results suggest that, despite their overly
erratic behaviour, cryptocurrencies may not necessarily exhibit peculiar
short term patterns with time dependencies which may be captured by
means of nonlinear classification.

Further study should be carried upon the state of the art in terms of
model optimization in machine learning: as the choice of model structure
and hyperparameters was conducted heuristically, it is plausible that
algorithmic optimization over the (vast) hyperparameter space may lead
to significant improvements.

B I B L I O G R A P H Y

[1] Coinbase. https://www.coinbase.com/.

[2] Coinmarketcap.com. https://coinmarketcap.com/.

[3] The gdax exchange. https://www.gdax.com/.

[4] Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for
financial time series using stacked autoencoders and long-short term
memory. PLOS ONE, 12(7):1–24, 07 2017.

[5] Stephen Chan, Jeffrey Chu, Saralees Nadarajah, and Joerg Oster-
rieder. A statistical analysis of cryptocurrencies. Journal of Risk and
Financial Management, 10(2), 2017.

[6] David Chaum. Blind signatures for untraceable payments. In David
Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in
Cryptology, pages 199–203, Boston, MA, 1983. Springer US.

[7] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic
cash. In Shafi Goldwasser, editor, Advances in Cryptology — CRYPTO’
88, pages 319–327, New York, NY, 1990. Springer New York.

[8] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley-Interscience, New York, NY, USA, 1991.

[9] John (JD) Douceur. The sybil attack. In Proceedings of 1st International
Workshop on Peer-to-Peer Systems (IPTPS), January 2002.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. J. Mach.
Learn. Res., 12:2121–2159, July 2011.

[11] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In Ernest F. Brickell, editor, Advances in Cryptology —
CRYPTO’ 92, pages 139–147, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg.

59

https://www.coinbase.com/
https://coinmarketcap.com/
https://www.gdax.com/

60 Bibliography

[12] Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural
networks for long-term dependencies. In Proceedings of the 8th Inter-
national Conference on Neural Information Processing Systems, NIPS’95,
pages 493–499, Cambridge, MA, USA, 1995. MIT Press.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[14] John Hopfield. Neural networks and physical systems with emergent
collective computational abilities. 79, 04 1982.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[16] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4/3:382–401, July 1982.

[17] Jan Lansky. Possible state approaches to cryptocurrencies. 8, 01

2018.

[18] Tsungnan Lin, B. G. Horne, P. Tino, and C. L. Giles. Learning long-
term dependencies in narx recurrent neural networks. Trans. Neur.
Netw., 7(6):1329–1338, November 1996.

[19] William J. Luther and Alexander W. Salter. Bitcoin and the bailout.
The Quarterly Review of Economics and Finance, 66:50 – 56, 2017.

[20] David J. C. MacKay. Information Theory, Inference & Learning Algo-
rithms. Cambridge University Press, New York, NY, USA, 2002.

[21] Martina Matta, Ilaria Lunesu, and Michele Marchesi. Bitcoin spread
prediction using social and web search media. 06 2015.

[22] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, Dec 1943.

[23] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf.

[24] Sebastian Ruder. An overview of gradient descent optimization
algorithms. CoRR, abs/1609.04747, 2016.

Bibliography 61

[25] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of go without human knowl-
edge. Nature, 550:354–359, 10 2017.

[26] Nassim Nicholas Taleb. Antifragile: Things that Gain from Disorder.
Allen Lane, London, UK, 2012.

	Introduction
	Cryptocurrencies
	History
	Background and definition of cryptocurrency
	The Blockchain
	Cryptocurrency markets

	Deep learning and Recurrent Neural Networks
	Supervised learning
	Neural networks fundamentals
	Optimizing the learning problem
	Backpropagation
	Overfitting: regularization and cross-validation

	Recurrent neural networks
	Vanishing and exploding gradients
	Long short-term memory

	The forecasting framework
	Hypothesis
	Directionality of prices
	Volatility of returns

	Data preprocessing and network structure
	Loss function
	Summary of the model

	Results
	Time series sourcing and structure
	Statistics
	Concluding remarks and future developments

